Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Antibiotics (Basel) ; 13(3)2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38534645

RESUMO

Listeria monocytogenes is a foodborne pathogen that contaminates food-processing environments and persists within biofilms on equipment, thus reaching final products by cross-contamination. With the growing demand for clean-label products, the search for natural antimicrobials as biopreservants, such as bacteriocins, has shown promising potential. In this context, this study aimed to evaluate the anti-listerial action of bacteriocins produced by Enterococcus lactis LBM BT2 in an alternative medium containing sugarcane molasses (SCM). Molecular analyses were carried out to characterize the strain, including the presence of bacteriocin-related genes. In the kinetic study on SCM medium E. lactis, LBM BT2 showed biomass and bacteriocin productions similar to those observed on a sucrose-based medium (control), highlighting the potential of the sugarcane molasses as a low-cost substrate. Stability tests revealed that the molecule remained active in wide ranges of pH (4-10) and temperature (60-100 °C). Furthermore, the proteolytic treatment reduced the biomolecule's antimicrobial activity, highlighting its proteinaceous nature. After primary purification by salting out and tangential flow filtration, the bacteriocin-like inhibitory substance (BLIS) showed bacteriostatic activity on suspended L. monocytogenes cells and against biofilm formation at a concentration of 0.625 mg/mL. These results demonstrate the potential of the produced BLIS as a biopreservative in the food industry.

2.
Biotechnol Lett ; 42(12): 2619-2629, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32979133

RESUMO

OBJECTIVE: Fructooligosaccharides (FOS) are prebiotic substances that have been extensively incorporated in different products of food industry mostly for their bifidogenic properties and economic value. The main commercial FOS production comes from the biotransformation of sucrose and intracellular and extracellular microbial enzymes-fructosyltransferases (FTase). Aspergillus oryzae IPT-301 produces FTase. In order to increase its production, this study focuses on evaluating the effects of different agitation speed and aeration rates which affect yields in a stirred tank bioreactor. RESULTS: Agitation had more influence on cell growth than aeration. The maximum intracellular FTase activity and the volumetric productivity of total intracellular FTase were obtained at 800 rpm and 0.75 vvm, and reached values of 2100 U g-1 and 667 U dm-3 h-1, respectively. The agitation speed had a strong influence on the activity of extracellular FTase produced which reached the maximum amount of 53 U cm-3. The higher value of total activity obtained was 22,831 U dm-3 at 0.75 vvm and 800 rpm. CONCLUSION: Aeration rates and agitation speed showed strong influence upon the growth and production of fructosyltransferase from Aspergillus oryzae IPT-301 in media containing sucrose as carbon source. The control of aeration rate and agitation speed can be a valuable fermentation strategy to improve enzyme production.


Assuntos
Reatores Biológicos , Meios de Cultura/química , Hexosiltransferases/biossíntese , Oligossacarídeos/química , Aspergillus oryzae/química , Aspergillus oryzae/enzimologia , Carbono/química , Fermentação , Hexosiltransferases/química , Sacarose/química
3.
Int J Biol Macromol ; 71: 2-7, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25043132

RESUMO

Polyhydroxyalkanoates (PHA) are biodegradable and biocompatible bacterial thermoplastic polymers that can be obtained from renewable resources. The high impact of the carbon source in the final cost of this polymer has been one of the major limiting factors for PHA production and agricultural residues, mainly lignocellulosic materials, have gained attention to overcome this problem. In Brazil, production of 2nd generation ethanol from the glucose fraction, derived from sugarcane bagasse hydrolysate has been studied. The huge amounts of remaining xylose will create an opportunity for the development of other bioprocesses, generating new products to be introduced into a biorefinery model. Although PHA production from sucrose integrated to a 1G ethanol and sugar mill has been proposed in the past, the integration of the process of 2G ethanol in the context of a biorefinery will provide enormous amounts of xylose, which could be applied to produce PHA, establishing a second-generation of PHA production process. Those aspects and perspectives are presented in this article.


Assuntos
Carboidratos/biossíntese , Etanol , Fermentação , Poli-Hidroxialcanoatos/química , Biotecnologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...